Throwing Darts and Missing the Bullseye: Fiscal and Debt Sustainability in Open Economies

Collin M. Constantine

University of Cambridge

Department of Economics Research Seminar University of the West Indies (Mona Campus) April 14, 2022

The Problem and Argument

The Problem

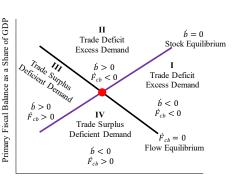
- A debt-targeting Fiscal Rule **misses** its target ⇒ FX and debt crises.
- Cyclical oscillations around stock-flow equilibria: the bullseye.

Debt Analyses Require a Stock-Flow Consistent (SFC) Framework

DOMESTIC DEBT (STOCK)

GDP (FLOW)

EXPORTS (FLOW)


The Argument

Only an SFC Fiscal Rule stabilises the debt ratio and goods market.

Next: Proof of the problem

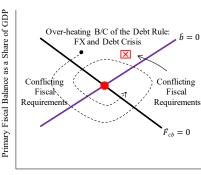
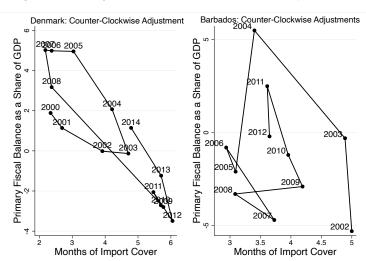

Proving the Problem: Fixed Peg

Figure 1: Stock-Flow Inconsistency and Missing the Bullseye

Central Bank's Stock of Foreign Assets

(a) Pro-Cyclical Fiscal Policy



Central Bank's Stock of Foreign Assets

(b) Counter-Clockwise Adjustments

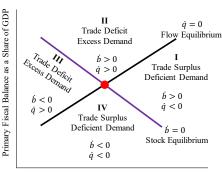

Evidence of the Problem: Fixed Peg

Figure 2: Primary Fiscal Balance and Months of Import Cover

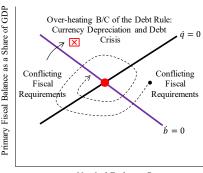
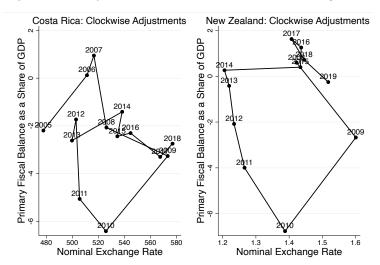

Proving the Problem: Pure Float

Figure 3: Missing the Bullseye: The Case of Contractionary Depreciation

Nominal Exchange Rate

(a) Pro-Cyclical Nominal Exchange Rate



Nominal Exchange Rate

(b) Clockwise Adjustments

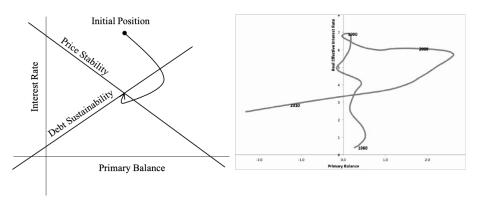
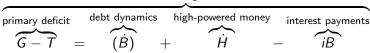

Evidence of the Problem: Pure Float

Figure 4: Primary Fiscal Balance and the Nominal Exchange Rate

The Tinbergen Rule as the Problem

Figure 5: Two Targets-Two Instruments in the USA: Mason & Jayadev 2016


Debt-Targeting Fiscal Rules

Debt Sustainability = stationarity \equiv a stable $\frac{Debt}{GDP}$ ratio.

- Domar Condition: $r > g \Rightarrow$ primary surpluses, otherwise deficits
 - Open-Economy: $r_F > g_{BP} \Rightarrow$ primary surpluses, otherwise deficits
- Mian et al. (2021): $r > g \alpha \Rightarrow$ primary surpluses, otherwise deficits
 - α is the semi-elasticity of r to the level of debt
- Reis (2021): $r > m \Rightarrow$ primary surpluses, otherwise deficits
 - m is the marginal product of capital

The Standard Model

Government Budget Constraint

- \bullet No monetisation on the grounds of price stability: $\dot{\textbf{H}}=\textbf{0}.$
- Debt-GDP ratio (b):

$$b = \frac{B}{PY} \Rightarrow B = (b)PY.$$

• Substitute and solve for debt **stock** dynamics (\dot{B}) , where i is the nominal interest rate.

$$\dot{B} = G - T + i(b)PY \tag{1}$$

The Standard Model Cont'd

Recall:

$$B = (b)PY$$
.

Take the total differential and divide by nominal GDP (PY):

$$\frac{\dot{B}}{PY} = \frac{\dot{\mathbf{b}}PY + \dot{P}bY + \dot{Y}bP}{PY}.$$

Solve for $\dot{\mathbf{b}}$, where $g = \dot{Y}/Y$ and $\pi = \dot{P}/P$:

$$\dot{b} = \frac{\dot{\mathbf{B}}}{PY} + b(-\pi - g)b. \tag{2}$$

The Standard Model Cont'd

Substitute Equation (1) into (2):

$$\dot{b} = \frac{(G-T)}{PY} + (i-\pi-g)b.$$

Invoke the Fisher equation $(r = i - \pi)$:

$$\dot{b} = \frac{(G-T)}{PY} + (r-g)b, \tag{3}$$

Theorem 1 (IBC and Stock-Flow Inconsistency)

Absent expansionary depreciation: any debt sustainability condition derived from the IBC is not SFC.

This Paper

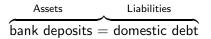
Develops a stock-flow consistent debt model

- A long-run primary deficit stabilises debt and the goods market,
 unless the weighted r > g is implausibly large.
- No more overshooting/undershooting of the bullseye.

In contrast to the standard model:

- Starts from goods market equilibrium: internal and external balances.
- Accounts for the **endogenous** source of high-powered money, *H*.
- Includes foreign-currency debt.

Roadmap


- Stock-Flow Consistent Accounting
- Stock-Flow Equilibria
- Key Results
- The Case Against a Long-Run Primary Surplus
- Appendix: includes the case of Jamaica and expansionary depreciation

Environment: Households

Definition 1 (Rich and Poor Households)

Rich households own banks and firms, while poor households do not.

Poor Households' Balance Sheet

Poor Households (PH)

- No foreign-currency denominated assets/liabilities.
- Too poor to hold gov. securities.

Rich Households' Balance Sheet \approx the net worth of banks and firms.

Environment: Non-Financial Firms

Firms' Balance Sheet

- Foreign-currency denominated assets and liabilities:
 - To finance investment and engage in international exchange.
- Recall rich HHs own the firms.

Environment: Banks

Banks' Balance Sheet

- No foreign-currency denominated liabilities.
- High-powered money (bank reserves) are not remunerated.
- Banks dominate the trade in FX to HHs and firms.
- Hold gov. debt for liquidity and regulatory purposes:
 - OM(Type)Os via the **primary market** in LICs.
 - OMOs via the secondary in EMEs and AEs.
- Recall rich HHs own the banks.

Environment: Consolidated Public Sector

Central Bank

Fixed Peg

- Maintains a credible peg via sterilised FXI.
- Gov. bonds are used for sterilisation purposes via OMTOs or OMOs.
- No Monetisation: money supply is endogenous.

Pure Float

- Inflation targeting: policy rate \approx UIP.
- Gov. bonds are used for OMTOs or OMOs.
- No Monetisation: money supply is endogenous.

Environment: Consolidated Public Sector

Government

- Issues local-currency debt to the private sector in the primary market.
- External debt is denominated in foreign currency (Original Sin).
- Redundant Balance Sheet via Adding-Up Constraint
 - The consolidated public sector's balance sheet is a **residual**:
 - Given the balance sheets of HHs, firms and banks.

Goods Market Flow Condition: Fixed Peg

Goods Market Flow Condition
$$\tilde{G} + X + I = T + M + S$$
,

where

$$\tilde{G} = \overbrace{G} + \overbrace{iB.}$$
 Goods/Services interest payments

After substitution: **primary balance**.

Goods Market Flow Condition

primary balance trade balance S-I balance interest payments

$$\overrightarrow{G-T} = \overrightarrow{M-X} + \overrightarrow{S-I} - \overrightarrow{iB}$$

(4)

Goods Market Stock-Flow Condition: Fixed Peg

External balance: stock-flow dynamics:

$$M - X = \overrightarrow{\dot{B}_g^f - \dot{F}_{cb}} + \overrightarrow{\dot{B}_c^f - \dot{F}_c - \dot{F}_b}, \tag{5}$$

where

- *B* is public debt and *F* is the stock of foreign assets.
- Superscript *f* is foreign-currency denomination.
- Subscripts: g is gov, cb is central bank, and c is corporation or firm.

Goods Market Stock-Flow Condition: Fixed Peg

Internal balance: stock-flow dynamics:

$$S-I = \overbrace{\dot{H} + \dot{B}_{g}^{b} + \dot{B}_{c} + \dot{B}_{ph} + \dot{F}_{b} - \dot{D}_{c} - \dot{D}_{ph}}^{\text{Rich Household}} + \overbrace{\dot{B}_{g}^{c} + \dot{F}_{c} + \dot{D}_{c} - \dot{B}_{c} - \dot{B}_{c}^{f}}^{\text{Ror Household}}$$

Simplify:

Rich Household

Commercial Bank

Corporation

Poor Household

$$S - I = \dot{H} + \dot{B}_{g}^{b} + \dot{F}_{b} + \dot{B}_{g}^{c} + \dot{F}_{c} - \dot{B}_{c}^{f} + \dot{B}_{g}^{ph} = 0$$
(6)

Stock-Flow Consistent Primary Balance: Fixed Peg

Substitute Conditions (5) and (6) into (4):

A Stock-Flow Consistent Primary Balance

$$G - T = (\dot{B}_g^f + \dot{B}_g) + \dot{H} - \dot{F}_{cb} - iB$$
 (7)

In contrast to:

Government Budget Constraint

$$G-T=(\dot{B}_g^f+\dot{B}_g)-iB$$
.

- Accounts for \dot{F}_{cb} and \dot{H} .
- Why \dot{H} ? To account for **endogenous** credit creation.

Evolution of Public Debt: Fixed Peg

$$\dot{B} = \dot{B}_{g}^{f} + \dot{B}_{g},$$

where

$$B_g = B_g^c + B_g^b.$$

Substitute this Definition into Condition (7) and solve in terms of \dot{B} :

$$\dot{B} = (G - T) - \dot{H} + \dot{F}_{cb} + iB \tag{8}$$

Recall:

$$B = (b)PY$$

and

$$\dot{b} = \frac{\dot{B}}{PY} + b(-\pi - g)b.$$

Stock-Flow Consistent Debt Dynamics: Fixed Peg

Substitute (8) into (2) and

The dynamic evolution of the public debt-GDP ratio is given below:

$$\dot{b} = \frac{(G-T) - \dot{H} + \dot{F}_{cb}}{PY} + (r-g)b,$$
 (9)

where

- r is the weighted real interest rate.
- The weights are: $\alpha = B_g^f/B$ and $1 \alpha = B_g/B$.
- We now need dynamic Equations for $\dot{\mathbf{H}}$ and $\dot{\mathbf{F}}_{cb}$ to solve the stock-flow model.

Dynamics of High-Powered Money

$$\dot{H} = \delta(H^T - H), \tag{10a}$$

where $1 < \delta < 0$ is an adjustment parameter.

• Target Stock of High-Powered Money:

$$H^T = \omega_0 + \omega_1 B_p \tag{10b}$$

where B_p is the stock of private sector debt $(B_p = B_c + B_{ph})$.

- $\omega_1 > 0$ b/c of inter-bank clearing and the demand for cash.
- There is no monetisation here.

Dynamics of Foreign Assets held by the Central Bank

$$\dot{F}_{cb} = \gamma (F^T - F_{cb}) \tag{11a}$$

$$F^T = \rho_0 + \rho_1 B\alpha - \rho_2(q^e) \tag{11b}$$

where

- $B\alpha$ is the stock of external debt: $\alpha = B_g^f/B$.
- q^e is expected devaluation.

Assumption 1 (A Credible Peg)

The central bank maintains a credible peg: $q^e = 0$.

• Therefore, $B\alpha \Rightarrow \text{long-run } F_{ch}*$.

Stock-Flow Equilibria: Fixed Peg

Substitution of Equations (10a-11b) into (9) yields:

$$\dot{b} = \Omega - \underbrace{\delta\omega_{1}b_{p} + \delta h}_{\text{Negative Net Effect}} -\gamma f_{cb} + \left[(r + \gamma \rho_{1}\alpha) - g \right] b, \tag{12}$$

where

- Lower case represents share of GDP: b_p , h, f_{cb} .
- ullet Ω is the primary deficit as a share of GDP.

Channel I: Demand Constraint

- **Channel**: $\partial \dot{b}/\partial b_p < 0 \Rightarrow$ debt repayment \Downarrow demand for Gov. Bonds.
 - Firms or HHs retire bonds or reduce bank deposits to repay debt.
 - So, they buy fewer Gov. Bonds in the primary market (AEs and EMEs).
 - Also, \Downarrow bank deposits to repay debt \Rightarrow excess bank reserves.
 - Excess bank reserves \Rightarrow excess bank liqudity \neq profit maximisation.
 - \bullet Banks in LICs buy fewer Gov. Bonds in primary market and \Uparrow FX.
- **Channel**: $\partial \dot{\mathbf{b}}/\partial f_{cb} < \mathbf{0} \Rightarrow \mathsf{FX}$ acc. \Downarrow demand for Gov. Bonds.
 - Government repays external debt.
 - Firms or HHs retire bonds or reduce bank deposits to ↑ FX.

Overall: HHs, firms and banks disinvest from Gov. Bonds as b_p and f_{cb} increase.

Channels II and III: Voluntary and Forced Savings

Channel II: Voluntary Savings

- High-Powered (Endogeous) Money ↑ public debt ratio b/c:
 - An \uparrow $h \approx$ the rise in wealth that accrues to rich households or shareholders of the banks.
 - Rich HHs increase their savings in the form of government bonds as private debt transfers assets from debtors to creditors.

Channel III: Forced Savings

- External Debt Share ↑ public debt ratio b/c:
 - As more FX service external debt obligations ⇒ fewer FX available for private consumption and investment.
 - Thus, the private sector accumulates public sector domestic debt as a form of forced savings.

Key Result I: Fixed Peg

Theorem 2 (Dynamic Efficiency and the Augmented-Domar Condition)

A primary deficit stabilises debt, if and only if:

$$-\delta\omega_{1}\mathbf{b_{p}}-\gamma\mathbf{f_{cb}}>\delta\mathbf{h}+(\mathbf{r}+\gamma\rho_{1}\alpha-\mathbf{g})\mathbf{b}.$$

- The avg. size of f_{cb} is 30% in EMEs in 2018 (Arslan and Cantu 2019).
- Stylised fact: **b**_p ranges from 50% to more than 100%.
- Efficient bankers minimise h, and foreign currency risks limit α .
- Ergo, a primary deficit stabilises the debt ratio under reasonable values for ${\bf r}$, α , and ${\bf g}$.

Key Result II: Fixed Peg

Proposition 1 (Money Creation and Debt Sustainability)

- (a). Money-financed fiscal deficits ψ f_{cb} and undermines the government's ability to service external debt and compromises overall debt sustainability.
- (b). When there is incomplete sterilisation, monetisation $\uparrow h \Rightarrow bank$ deposits and $\uparrow for Gov$. Bonds. Thus, $\dot{b} > 0$.
 - What happens if the Gov. refuses to satisfy the higher demand for bonds?

Key Result I: Pure Float

Stock-Flow Consistent Debt Dynamics,
$$r' = i + g_q - \pi$$

$$\underbrace{\dot{b} = \Omega - \delta\omega_1 b_p + \delta h + (i + g_q - \pi - g)b}, \tag{13}$$

where $\mathbf{g}_{\mathbf{q}}$ is the long-run rate of nominal depreciation.

Theorem 3 (Dynamic Efficiency and Debt Sustainability)

A primary fiscal deficit stabilises debt, if and only if:

$$-\delta\omega_1\mathbf{b_p} > \delta\mathbf{h} + (\mathbf{r}' - \mathbf{g})\mathbf{b}.$$

Key Result II: Pure Float

Proposition 2 (Money Creation and Debt Sustainability)

When the central bank monetises the fiscal deficit, it undermines debt sustainability through two channels:

- (i). It raises the stock of high-powered money as a share of GDP, and
- (ii). It increases the long-run rate of nominal depreciation, which raises the local currency burden of external debt.
 - Overall, strong case against monetisation.
 - See the Appendix for additional arguments.

The Case Against a Long-Run Primary Surplus

- A Long-Run Primary Surplus ⇒ a long-run private sector deficit:
 - ⇒ **HH** and/or **firm-level debt crisis** ⇒ high unemployment.
- Or, a long-run trade surplus:
 - \Rightarrow external imbalances: external debt crisis for deficit country.
 - Collapse of trade surplus ⇒ high unemployment.
- Absent a long-run private sector deficit or trade surplus:
 - **Domestic demand stagnation** ⇒ high unemployment.
- SIDS and Natural Disasters:
 - Require emergency spending but NOT in local currency units.
 - Need to save FX or maintain a stable FXR for creditworthiness.
- Solution: a **long-run primary deficit** in each case.
 - What about debt? An SFC fiscal rule ⇒ stable debt.

Conclusion

[...] sustained large surpluses have been less common, [...] Out of a sample of 87 countries [...] less than 20 percent sustained primary surpluses [..] — IMF 2011: pp.8.

- Main result: A primary deficit stabilises debt and the goods market.
- Channels: Demand constraint, forced and voluntary savings.
- Policy: An SFC fiscal rule yields an optimal primary deficit.

SFC Primary Deficit: Fixed Peg
$$\overbrace{\Omega^* = \delta\omega_1 b_p - \delta h + \gamma f_{cb} + (g - r - \gamma \rho_3 \alpha_F) b}^{\text{SFC Primary Deficit: Pure Float}}$$

$$\underbrace{\Omega^* = \delta\omega_1 b_p - \delta h + (g - r') b}^{\text{SFC Primary Deficit: Pure Float}}$$

Appendix

Fiscal Space

Definition 2 (Fiscal Space)

Fiscal space refers to the extent of resource availability (foreign assets held by the central bank as a share of GDP) and the degree of resource utilisation (the long-run growth rate, private debt, high-powered money, and interest income) consistent with full employment equilibrium and a stable debt ratio.

• Tax revenue in LCU do not affect fiscal space: why?

Optimal Foreign Reserves

Proposition 3 (Optimal Stock of Foreign Assets held by the Central Bank)

The optimal stock of foreign assets as a share of GDP is given as follows:

$$f_{cb}* = \frac{\Omega - \delta\omega_1b_p + \delta h + (r + \rho_1\alpha - g)b}{\gamma},$$

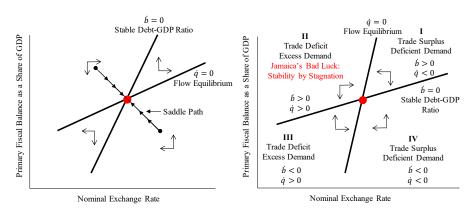
where $f_{cb}*$ is consistent with stable debt and goods market equilibrium at potential output.

SFC Fiscal Policy and Exchange Rate Stability

Proposition 4 (SFC Fiscal Rule and Exchange Rate Stability)

A fiscal rule that adheres to the augmented-Domar condition $\Omega_{ADC}^{f\ x\ r}$ provides for both debt and exchange rate stability.

$$\Omega_{ADC}^{f \times r} = \delta \omega_1 b_p - \delta h + (g - r')b$$

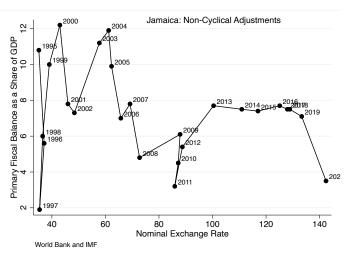

Expansionary Depreciation I

Proposition 5 (Hitting the Bullseye: Expansionary Depreciation)

The Domar fiscal rule Ω_{DC} is akin to a stock-flow consistent fiscal rule when a nominal depreciation is expansionary.

Expansionary Depreciation II

Figure 6: Two Possibilities but One is Ruled Out by Evidence



(a) Saddle-Point (Unstable) Equilibrium

(b) Stable Node

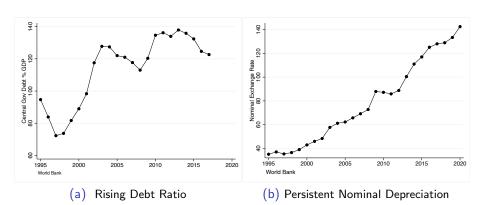

Expansionary Depreciation: Evidence

Figure 7: The Case of Jamaica

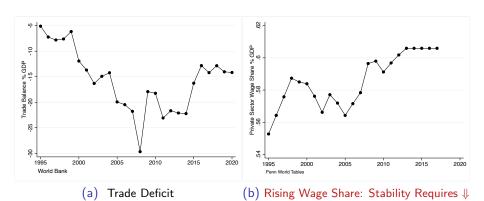
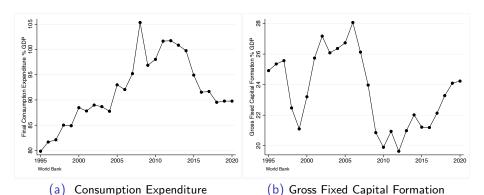

The Case of Jamaica: Quadrant II

Figure 8: Empirical Properties of Figure 6(b): Quadrant II

The Case of Jamaica: Quadrant II


Figure 9: Empirical Properties of Figure 6(b): Quadrant II

The Case of Jamaica: Rising Wage Share

Jamaica's Growth Puzzle is a Misnomer

Figure 10: Price of Fiscal Austerity is Investment

The Case Against Monetisation

- Monetisation ↑ high-powered money and bank deposits
- Case of an Inter-Bank Market
 - Lowers the inter-bank interest rate independent of the stance of monetary policy, hence the term fiscal dominance.
- Case without an Inter-Bank Market
 - The deposit interest cost rises, which lowers banks' net income.
 - Banks increase the interest rate spread—the difference between lending and deposit rates—independent of the stance of monetary policy.

Axiom 1 (Monetisation and Ineffective Monetary Policy)

Monetised-fiscal deficits or fiscal dominance undermines the effectiveness of monetary policy.

The Case Against Monetisation: An Illustration

Figure 11: Monetisation of the Fiscal Deficit by 10 LCU

Central Bank		Bank		Non-Bank	
Assets	Liabilities	Assets	Liabilities	Assets	Liabilities
NFA	Н	н	D _{nb}	D _{nb}	L
	+10 LCU	+ 10 LCU	+10 LCU	+10 LCU	
В	D _g	L		В	
	- 10 LCU				
		В			

- If no reserve requirements: excess reserves = 10 LCU.
- In the case of a RRR of z < 1: excess reserves = 10 LCU z10 LCU.
- Monetisation ⇒ non-borrowed excess reserves.

The Case for Bond-Financed Fiscal Deficits

Axiom 2 (Bond-Financed Fiscal Deficits and Effective Monetary Policy)

Bond-financed fiscal deficits have a net-zero effect on the creation of high-powered money and banks' net interest income.

Proof I: The Case of an Inter-Bank Market.

Central government issues bonds to banks in exchange for reserves, which permits the central bank to maintain its target inter-bank interest rate.

- This is why central governments issue debt or why central banks issue liabilities like sterilisation bonds in the primary market.
- Public sector debt does not exist to fund fiscal deficits.

The Case for Bond-Financing Cont'd

Proof II: The Case without an Inter-Bank Market.

Central government issues bonds to banks in exchange for reserves, which permits them to cover their deposit interest costs without increasing the interest rate spread.

- In both cases Axiom 2 holds.
- Sovereigns should bond-finance their fiscal deficits.
- Poor understanding of money and banking lead to unnecessary pathologies:
 - Monetisation ⇒ non-borrowed excess reserves in commercial banks ⇒ comparatively higher interest rate spreads.
 - Or, large devaluations or rapid depreciations as lower inter-bank interest rates lead to capital outflows.
- Axiom 2 ⇒ the debt sustainability problematic.